USSR

UDC 621.3.049.774.002.5

DADAMYAN, Z. M. DEGTYAREV, A. P., KOKHANOV, B. T., MAKAROV, Yu. Ye.

"A Method of Making Printed Circuits"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 2, Jan 71, Author's Certificate No 290494, division H, filed 13 Sep 68, published 22 Dec 70, p 170

Translation: This Author's Certificate introduces a method of making printed circuits based on making an electrostatic image of the printed circuit on a foil-coated dielectric board, and etching the blank sections. As a distinguishing feature of the patent, the method is simplified by covering the foil-coated board with a dielectric layer such as lacquer with a polyvinyl alcohol base before applying the electrostatic image of the circuit.

1/1

UDC 669.295.046.78

DENISOV, S. I., RASPOPIN, V. G., and DEGYAREV, B. S.

"Significance of the Limit of Charge Briquetting in the Melting of Titanium Concentrates"

Sb. tr. Vses. n.-i. i proyektn. in-t titana, [Collected works of All-Union Scientific-Research and Planning Institute for Titanium] 6, 1970, 12-15, (Translated from Referativnyy Zhurnal-Metallurgiya, No. 1, 1971, Abstract No. 176 by the authors).

Translation: It is established on the basis of results of studies of the melting of powdered and briquetted charges of Fe-Ti concentrate from the Samotkanskiy deposit (64% TiO₂, 24% FeO), performed in an open type

commercial furnace with a power of 10,500 kva, that the time during which current is applied to the furnace is significantly higher when powdered titanium is used (95.5%) than when briquettes are melted (90.5%) due to the reduction in standing time between melting cycles. The productivity of the furnace as to slag is higher when the powdered charge is melted than when briquettes are melted (3.40 rather than 3.27 t/hr). However,

1/2

UDC 669,295.046.78

DENISOV, S. I., RASPOPIN, V. G., and DEGYAREV, B. S. Sb. tr. Vses n.i. i proyektn. in-t titana, [Collected works of All-Union Scientific-Research and Planning Institute for Titanium], 6, 1970, 12-15, (Translated from Referativnyy Zhurnal-Metallurgiya, No. 1, 1970, Abstract No. 1G176 by the authors).

when this charge is melted, increased losses in concentrate occur as dust carried away with the exhaust gases (3.6% more), which can be reduced by covering the furnace with an arch and organizing a system of dust traps. Technical-economic calculations have shown that the advantages produced in melting of a briquetted charge do not justify the high expenses involved in producing the briquettes, so that melting of a powdered charge is more profitable. 2 tables.

2/2

- 73 -

Acc. Nr: #P0040872

Ref. Code:

UR 0103

PRIMARY SOURCE: Avtomatika i Telemekhanika, 1970, Nr / , pp 36-44

OPTIMAL CONTROL OF MONODIMENSIONAL PROCESSES WITH TIME-DELAY ARGUMENT

G. L. DEGTYAREV, T. K. SIRAZETDINOV

There is determined the principle of maximum as the necessary condition of the eptimality of control in the systems described by nonlinear hyperbolic equations with a time-delay argument. Time-delay occurs both in the equations of movement and in the boundary conditions. A case of time-delay, in control is considered.

CIA-RDP86-00513R002200620010-8" APPROVED FOR RELEASE: 08/09/2001

developing over	the North Atlan	itic on the form	nation of larg	e-scale field	s of the reduce	d
index of atmosph this effect while	forecasting th	TOP BINTION BOIL	ars our core un	SSIDEFILL TO:	DILC IIIIO DICOM.	• • • • • • • • • • • • • • • • • • • •
ultra-short wave	range.				.ec-	

AP9038940

UR 0050

Meteorologiya i Gidrologiya, 1969, Nr 7, pp 64-70

REDUCED INDEX OF ATMOSPHERIC REFRACTION OVER THE NORTH ATLANTIC AND ITS CHANGES DEPENDING ON SYNOPTIC PROCESSES

G. M. Deglyarev

In the article consideration is being given to the effect of synoptic processes

Miscellaneous

USSR

UDC: 518:517.9:538.3

DEGTYARLY, L. M. SAMARSKIY, A. A., and FAVORSKIY, A. P.

"Numerical Solution of Interior Steady-State Problems in Electrodynamics"

Moscow, Zhurnal Vychislitel noy Matematiki i Matematicheskoy Lziki, Vol. 10, No. 6, November-December 1970, pp 1409-1417

Abstract: This paper considers problems connected with the numerical solution of nonselfconjugate boundary problems which arise in the investigation of electric current fields or temperature fields in a medium with anisotropic electroconductivity and thermoconductivity. By changing the approach, the authors transfer the most important characteristics of the operator in the original problem to the difference operator approximating it. A divergent difference system of second-order accuracy is set up for the divergent, positively defined operator of the original boundary problem and is applied to three different problems. These problems

1/2

USSR

DEGFYAREV, L.M., SAMARSKIY, A.A., and FAVORSKIY, A.P., Zhurnal Vychislitel'noy Matematiki i Matematicheskoy Fiziki, Vol 10, No 6, November-December 1970, pp 1409-1417

are: two-dimensional effects in boundary zones of a magnetic field or electrodes; ionization instability in a low-temperature magnetized plasma; and the two-dimensional problem of the introduction of an ultrasonic flow of conducting gas into a magnetic field. The authors express gratitude to I. V. Fryazinov.

2/2

2]

USSR

UDC 533.951.8

BUGAREV, A. V., DEGTYAREV, L. M., SAMARSKIY, A. A., Corresponding Member of the Academy of Sciences USSR, FAVORSKIY, A. P.

"Flow of a Supersonic Conducting Gas in an Inhomogeneous Magnetic Field"

Moscow, Doklady Akademii Nauk SSSR, Vol 192, No 3, 1970, pp 520-

Abstract: A supersonic homogeneous gas flow with finite electrical conductivity in a plane channel of constant width is studied. An external magnetic field is applied at time t=0. It is assumed that the magnetic Reynolds number is small and that the magnetic field $H_{\rm Z}$ is a given function of the x-coordinate. The nonstationary magnetohydrodynamic equations for the system are given. It is assumed that the flow at entry is supersonic ($H_1 = 2.92$). Previous analytical solutions of this problem have assumed that $R_{\rm m}$ is much less than 1, but since this is not always valid, it is not assumed here and numerical methods are applied. Changes in the flow parameters at entry into and exit from the magnetic field are graphed and analyzed. The following conclusions are drawn: 1. A considerable rearrangement of the

- 9/1 -

USSR

BUGAREV, A. V., et al, Doklady Akademii Nauk SSSR, Vol 192, No 3, 1970, pp 520-523

supersonic flow and the electric current field can occur under finite values of R_m . 2. The degree of retardation of the flow and its inhomogeneity in the transverse cross section are intensified with an increase in R_m . There is a critical value of R_m which, if exceeded, leads to considerable restructuring of the flow to supersonic. The value of the integral joule heating is established asymptotically with respect to R_m . 3. A smooth change in the magnetic field reduces the degree of retardation of the flow but worsens its homogeneity over the cross section. 4. A considerable pressure and velocity gradient occurs along the wall which can effect flow in the boundary layer.

2/2

THE STREET OF TH

چې بالدون کانونوا

UDC 667.61:577.472

DOLGOPOL'SKAYA, M. A., GUREVICH, Ye. S., DEGTYAREV, P. F.

"Testing Antifouling Paints under Tropical Conditions"

Kiev, Biologiya Morya -- Sbornik (Biology of the Sea -- Collection of Works), Vol 18, The Biology of Fouling, 1970, pp 40-52

Abstract: In the article are presented the results of tests on new antifouling paints under stationary conditions in the Gulf of Mexico in the Havana region as well as on two ocean-fishing ships, the "G. Uspenskiy" and the N. Ostrovskiy," traveling in the waters of the Atlantic Ocean (17 - 23°S and 5°W). Out of a large assortment of antifouling paints, the best results under tropical conditions were obtained in the testing of thermoplastic paint TPK-86, KR-24, KhV-53, KF-751, KhV-71, and KhS-79. These paints afford reliable protection against fouling not only in the Black Sea, but also under tropical conditions. The best results, both with respect to protection against fouling and with respect to film stability, were obtained as result of the use of new synthetic-base antifouling paints. It was established that the effectiveness of antifouling paint is determined not only by

DOLGOPOL'SKAYA, M. A., et al., Biologiya Morya -- Sbornik, Vol 18, 1970, pp 40-52

a sufficient leaching-out rate of the poisons, but also by the reserve of the poisons in the coating. With a high leaching-out rate of the poison and a small reserve of it in the paint, it is rapidly expended and the paint becomes fouled. Under tropical conditions there is observed a higher leaching-out rate of the poison and a lower resistance of the fouling-organism larvae to the poisons. 2 tables. 20 figures. 5 bibliographic entries.

5/2

- 82 -

VDC 947.943

PORCSHIN, K. T. (DECEASED), SADYKOV, YU. D., KHAYDAROV, K. KH., YGYSI-KOL'-SHTEYN, A. L., DEGTYAREV, V. A., and BURICHENKO, V. K., Institute of Chemistry Academy of Sciences Tadzissr

"Physiologically Active Papaverine Derivatives"

Tashkent, Khimiya Prirodnykh Soyodineniy, No 1, 1972, pp 83-84

Abstract: Papaverine reacted with acyl chlorides of sulfonic acids, carboxylic acids and chloroacetic acid, yielding N-benzenesulfonylpapaverinium chloride, m.p. 200 (dec.); N-benzeylpapaverinium chloride; m.p. 193; N-acetylpapaverinium chloride, m.p. 217 (dec.); and the chloride of N-papavorineacetic acid, n.p. 210 (dec). The products exhibited hypotensive and spasmolytic properties.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

UDC 533.933

BYKOVSKIY, YU. A., DEGTYAREV, V. G., DEGTYARENKO, N. N., YELESIN, V. F, LAPTEV, I. D., NEVOLIN, V. N., Moscow Engineering-Physics Institute

"Kinetic Energies of Laser Plasma Ions"

Leningrad, Zhurnal Tekhmicheskoy Fiziki, Vol XLII, No 3, 1972, pp 658-661

Abstract: The mass-spectrometric method was used to study the ion composition and distribution of ions with different z with respect to energy in the last stage of dispersion of a substance. A transit time mass-spectrometer with an electrostatic analyzer was used in the experiments. A study was made of the maximum energy of the ions $E_{\rm max}$ of a laser plasma as a function of the radiation flux density in the range of $q\sim10^8-10^{11}$ watts/cm². The value of $E_{\rm max}$ obtained as a function of the ion mass. The domain of weak dependence of $E_{\rm max}$ ef (q) was detected in the 10^8-10^9 watts/cm² range. The integral spectrum was determined by the energy distributions of the ions with different charge. Values obtained for $q_1,\ q_2$ (the flux densities) and $\gamma_1\alpha$, α_1 (N $\sim q^\alpha$ where n is the total number of charged particles and $E_{\rm max}\sim q^{(1)}$) are tabulated for Be, A1, Ti, Cu, Nb and W. For bismuth with a flux density of $10^8 \lesssim q \lesssim 10^{11}$ watts/cm², no region of weak dependence of $E_{\rm max}= f(q)$ was detected. This

USSR

BYKOVSKIY, YU. A., et al., Zhurnal Tekhnicheskoy Fiziki, Vol XLII, No 3, 1972, pp 658-661

agees with the calculated values of q_1^{\prime} and q_2^{\prime} (the boundary values of the radiation flux density range of the gigantic laser pulse in which phase transition conditions exist).

2/2

- 146 -

UDC 669.295.053.24

DEGTYAREV. V. S., DENISOV. S. I., DENISOVA, N. V., KIPRICH, N. A., AND GOBOV, A. P.

"Testing the Process of Melting of Titanium Slags on the Basis of Changing Electrical Resistance"

Sb. tr. Vses. n.-i. i proyektn. in-t titana [Collected works of All-Union Scientific-Research and Planning Institute for Titanium], 6, 1970, 27-29, (Translated from Referativnyy Zhurnal-Metallurgiya, No. 1, 1971, Abstract No. 1G188 by the authors).

Translation: Results are presented from a study of the electrical resistance of granulated Ti slags as a function of various factors at 25°. As the content of FeO changes from 15.49 to 2.5%, the resistivity of Ti slag with a grain size of less than 0.1 mm decreases from 3.08·10⁻⁵ to 1.41·10³ ohm·cm, i.e., by 218 times. Testing of the reduction electric melting of Ti concentrates, consisting of determination of FeO during the course of the process, can be performed by determining the electrical resistance of the slags. 2 figures; 1 table.

WDC 669.295

DENISOV, S. I., RASPOPIN, V. G., and DEGTYAREV, V. S.

"The Role of the Briquetting Stage in Processing Charge During the Smelting of Titanium Concentrates"

Moscow, Metallurgiya i Khimiya Titana (Institut Titana), Metallurgiya Publishing House, Vol 6, 1970, pp 12-15

Translation: On the basis of results from research on smelting powder and briquetted charges from iron-titanium concentrate from the Samotkanskoye deposit (64% TiO2, 24% FeO), conducted on an open-type industrial furnace with a capacity of 10,500 kilovolt-amperes, it was established that as a result of decreasing periods of idle time between smeltings, the time that the furnace is live in processing pwoder charge is considerably greater (95.5%) than in smelting briquets (90.5%). It was also shown that furnace productivity for slag in smelting powder charge is higher than in smelting briquets (3.40 as against 3.27 tons per hour). However, in smelting this charge, increased losses of concentrate with the dust of escaping gasses (more than 3.6%) takes place. This can be reduced by covering the furnace with a crown and setting up a system of capturing the dust. Technical-1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

DENISOV, S. I., et al., Metallurgiya i Khimiya Titana (Institut Titana), Metallurgiya Publishing House, Vol 6, 1970, pp 12-15

economic calculations show that the several advantages gained in smelting briquetted charge do not justify the high costs of the briquetting stage, as a result of which smelting powder charge is more profitable. Two tables and two bibliographic entries.

2/2

- 56 -

UDC 669.259-04

DEGTYAREV, V. S., DENISOV, S. I., DENISOVA, N. V., KIPRICH, N. A., and

"On Controlling the Process of Smelting Titanium Slags by Change in Electric Conductivity"

Moscow, Metallurgiya i Khimiya Titana (Institut Titana), Metallurgiya Publishing House, Vol 6, 1970, pp 27-29

Translation: Results are given of an investigation of the electrical resistance of pulverized titanium slags at a temperature of 25°C. It is established that, with a change in the ferrous oxide content from 15.49 to 2.5%, the specific resistance of the titanium slag with a coarseness of -0.1 millimeters decreased from 3.08·10⁻⁵ to 1.41·10⁻³ ohms/cm, i.e., by a factor of 218. In the authors' opinion, control over reduction electrosmelting of titanium concentrates, which consists of determining ferrous oxide during the course of the process, can be exerted by establishing the electrical resistance of the slags. Two illustrations, one table, and three bibliographic entries.

1/1

1/2. 024 UNCLASSIFIED PROCESSING DATE--11SEP70
TITLE--ELECTRICAL CONDUCTIVITY OF MELTS DURING THE REDUCTIVE SMELTING OF
TITANIUM CONCENTRATES -U-

AUTHOR-DENISOV, S.I., DEGTYAREV, V.S., REZNICHENKO, V.A.

COUNTRY OF INFO--USSR

SOURCE--IZV. AKAD. NAUK SSSR METAL. 1970, (1), 80-2

DATE PUBLISHED----70

SUBJECT AREAS--MECH., IND., CIVIL AND MARINE ENGR, MATERIALS

TOPIC TAGS--SLAG, ELECTRICAL CONDUCTIVITY, SMELTING FURNACE, TITANIUM,

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1988/0540

STEP NO--UR/0370/70/000/001/0080/0082

CIRC ACCESSION NO--APO105525

UNCLASSIFIED

2/2 024
CIRC ACCESSION NO--APO105525

ABSTRACT/EXTRACT--(II) GP-0- ABSTRACT. SAMPLES HERE TAKEN FROM THE FURNACE AT DIFFERENT TIMES DURING THE REDUCTIVE SMELTING OF FE-TI CONCS. THE CONTENT OF FEO VARIED FROM 23.9 TO 3.77PERCENT, THAT OF TI SUB2 O SUB3, FROM 0 TO 24-26PERCENT, AND OF TIO, FROM 0 TO 4PERCENT. THE CHANGES IN ELEC. COND. OF TI SLAGS WERE DETD. AS A FUNCTION OF TEMP. AND THE CONTENT OF FEO. DURING THE MELTING PROCESS, THE ELEC. COND. CHANGED FROM 25-30 OHM-CM FOR THE INITIAL MELT TO 150-170 OHM-CM FOR THE SLAG AT THE OUTPUT WITH 4-5PERCENT FEO.

UNCLASSIFIED

1/2 032 UNCLASSIFIED PROCESSING DATE--13NOV70
FITLE--A STUDY OF THE ELECTRICAL CONDUCTIVITY OF TITANTUM SLAGS -U-

AUTHOR-(03)-DEGTYAREV, V.S., REZNICHENKO, V.A., DENISOV, S.I.

COUNTRY UF INFO--USSR

SOURCE-- IZVEST. V.U.Z., TSVETNAYA MET., 1970, (1), 43-47

DATE PUBLISHED ---- 70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS-SLAG, TITANIUM, DRE BENEFICIATION, BIBLIOGRAPHY, ELECTRIC CONDUCTIVITY, METAL MELTING, ACTIVATION ENERGY, IRON ORE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/0550

STEP NO--UR/0149/70/000/001/0043/0047

CIRC ACCESSION NU--AP0124245

UNCLASSIFIED

CONCENTRATES WAS STU NATURE. THE SPECIFI ASSOCIATED THEREWITH RATIO OF TI SUB2 O S RELATIONSHIPS ARE DE	GP-O- ABSTRACT: THE ELECTION OF THE ELECTION OF THE CONDUCTIVITY OF THE CONDUCTIVITY OF THE ELECTICAL CONDUCTIVITY OF THE ELECTRICAL CONDUCTIVITY	VAS MAINLY OF AN ELECTRONIC (AND THE ACTIVATION ENERGY (AL TI CONTENT AND ON THE THE CONDUCTIVITY—TEMP.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

Nitrogen Compounds

USSR

UDC 542.91:547.963.3

KRAYEVSKIY, A. A., DEGTEREV, Ye. V., GOTTIKH, B. P., and NIKOLENKO, L. N., Institute of Molecular Biology, Academy of Sciences USSR

"Aminoacyl Derivatives of Nucleosides, Nucleotides and Polynucleotides. 10. The Feasibility of Using Diethyl Phosphate Imidazolide for the Synthesis of 3'(2')-0-Aminoacyl Nucleotides"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 8, Aug 71, pp

Abstract: In the search for imidazole compounds which react in an aqueous medium with carboxylic acids to give their imidazolides, the authors studied the interaction of diethyl phosphate imidazolide with acetic acid and tert.—butylhydroxycarbonyl alanine in an aqueous medium and in absolute isopropanol. It was found spectrophotometrically that the corresponding imidazolides are formed. It is shown that it is possible in principle to use diethyl phosphate imidazolide as activating agent for the synthesis of 3'(2')—aminoacyl nucleotides as a result of the reaction between amino acid and nucleotide in an aqueous medium, but that this reactant is not effective enough, since the rate of its hydrolysis is of the same order as the rate of N—acylimi—1/2

KRAYEVSKIY, A. A., et al., Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 8, Aug 71, pp 1730-1736

The authors thank Yu. A. TETERIN for taking PMR spectra.

2/2

- 20 -

USSR

UDC: 621.317.8

AVVAKUMOV, Yu. I., DEGTYAR', L. E., ZELINOVSKIY, Z. I., KERITSKIY, L. P., SOLOMYANCHUK, L. K., TSAYREF, K. M., Kishinev, Scientific Research Institute of Instrument Building

"A Wire-Wound Resistor"

USSR Author's Certificate No 283365, filed 7 Apr 69, published 11 Dec 70 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6V362 P)

Translation: This Author's Certificate introduces a wire-wound resistor which consists of wires connected in parallel and wound on a common form. As a distinguishing feature of the patent, reactance is reduced by using an even number of wires in the winding, connecting the initial ends of even-numbered wires and terminal ends of odd-numbered wires to one of the current leads arranged along the axis of the form, and connecting the initial ends of odd-numbered wires and terminal ends of even-numbered wires to the other current lead.

1/1

- 61 -

DEGTYAREY Yu. G.

" \mathcal{K} -Ray Spectrum of Nb 93 During Inelastic Neutron Scattering"

Moscow, Journal of Nuclear Physics, February 1970, pp 241-243

Abstract: Gamma radiation of Nb93 from the reaction (n, n') was studied by means of a Ge(Li) spectrometer. Monoenergetic neutrons were obtained on an electrostatic accelerator in the reaction T(p, n)He3. A heretofore unknown pair of lines, 948 and 977 kev, corresponding to two close states of Nb93, was discovered in the gamma-ray spectrum measured. In the work the position of other low-lying levels of Nb93 was determined more accurately.

The article includes one figure and one table. There are 5 references.

1/1

Therapy

USSR

LOPATINA, Zh. M., BEREZNITSKAYA, L. M., DEGTYAREV, Yu. N., and KOZHEVNIKOVA, L. V., Semipalatinsk Medical Institute

"Prognostic Value of Dysproteinemia and Increased Vascular Permeability in Brucellosis Patients"

Alma-Ata, Zdravookhraneniye Kazakhstana, No 1, 1972, pp 28-30

THE PROPERTY OF THE PROPERTY O

Abstract: Observation of 531 brucellosis patients showed a relationship between the dynamics of vascular permeability, serum proteins, and the response to therapy. Dysproteinemia and increasing vascular permeability were characteristic of those refractory to therapy. Follow-up examinations of patients after discharge from the hospital revealed that recurrences were most likely among those with continuing dysproteinemia and increased vascular permeability. In most persons examined in a period of clinical remission, serum proteins and vascular permeability were within normal limits. A few exhibited pathological changes — decrease in albumins, increase in alpha and gamma globulins, and slightly increased vascular permeability — and it was this group that was mostly likely to have relapses. Thus, dysproteinemia and increased vascular permeability are unfavorable prognostic signs. However, a normal blood picture in a period of remission is not a reliable indicator of complete

LOPATINA, Zh. M., et al., Zdravookhraneniye Kazakhstana, No 1, 1972, pp 28-30 recovery, for it was observed at this time even in persons who subsequently suffered relapses.

2/2

- 58 -

Pathology

USSR

WDC 616.981.42-07. [616.153.96+616.13-008.67-07

LOPATINA, ZH. MO., BEREZNITSKAYA, A. M., DEGTYAREV, YU. N., and KOZHEVNIKOVA,

"Dynamics of Protein Fractions in the Blood Serum and Vascular Permeability in Patients With Brucellosis"

Moscow, Terapevticheskiy Arkhiv, Vol 43, No 2, Feb. 71, pp 62-67

Abstract: Clinical and laboratory studies of patients with brucellosis were conducted to determine shifts in protein content and vascular permeability as supplementary criteria indicating the activity of brucellosis infection. Total protein content was studied with the use of a refractometer. The serum content of protein fractions by the method of paper electrophoresis and vascular permeability by the rate of semiabsorption of 5 millicuries of I131 from intracutaneous deposits. A total of 531 patients with brucellosis and 50 healthy people in the control group were investigated. An analysis of the data obtained revealed dysproteinemia, hypoalbuminemia, an increase in the blood content of alpha- and gamma-globulins, and increased vascular permeability in the overwhelming majority of patients during the most active periods of brucellosis, especially when on high allergic reactivity and inflammation were also present. A tendency toward normalization of the above

LOPATINA, ZH. MO., et al., Terapevticheskiy Arkhiv, Vol 43, No 2, Feb 71, pp 62-67

criteria was observed with abatement of clinical manifestations of brucellosis and the remission of the disease. Therapy consisted of the administration of antibiotics — tetracycline + streptomycin, vaccine in combination with trasylol, prednisolone, aspirin or pyrasolone preparations. All produced positive results. Some of the preparations apparently affected the dynamics of protein shifts and vascular permeability changes; no precise parallelism, however, has been established. After being discharged from the hospital, the patients were kept under observation for periods of 3-4 years. Retardation of the normalization of the protein picture and vascular permeability was noted in a number of patients, indicating the persistence of brucellosis process. The recurrence of the disease occurred most frequently among these patients.

2/2

- 65 -

USSR

UDC: 632.951:634.11

DECTYAREVA, A. S., and CRODSKIY, V. A., Ukrainian Scientific Research Institute of Plant Protection

"Effectiveness of New Compounds Against Apple Worm in the Steppe Zone of the Ukraine"

Moscow, Khimiya v Sel'skom Khozyaystve, no 11, Nov 70, pp 23-25

on design design de la companya de l

Abstract: The selection of insecticides for controlling the apple worm is a very complex task considering that the compounds must differ in type of action (to prevent the emergence of stable populations) and, specifically, be of low toxicity to humans and varm-blooded animals. During the period of 1966-1969 the following compounds were tested: S-9491 (iodophos) (Switzerland); Gardona (SD-8447) (England); Sevin (G.D.R.); carbophos; mesurol (G.D.R.); metaphos (G.D.R.); methylnitrophos; trichlorometaphos; phosalone (France); Phthalophos (U.S.A.); cyanox (Japan); Gidial (Italy).

1/2

DEGTYAPIVA, A. S., et al, Khimiya v Sel'skom Khozyaystve, no 11, Nov 70,

Sevin, a highly effective compound against Lepidoptera caterpillars was used as the standard control compound. Of all tested compounds against the apple worm, phosalone, cidial, metaphos, sevin, Gardona, S-9491, cyanox, phthalophos and imidan were found to be most effective. Trichlorometaphos, trolen, methylnitrophos and metathion failed to provide adequate protection against this pest. LD50 values of all tested compounds are specified. Effectiveness per concentration and duration of effect in various concentrations are cited in tabular form.

2/2

- 81, -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

UDC 666.76:536.421.5

KAYNARSKIY, I. S., DEGTYAREVA, E. V., and ORLOVA, I. G., Ukrainian Scientific Research Institute of Refractory Materials

"Technology for the Production of Refractory Materials From Sintering-Active Materials"

Moscow, Ogneupory, No 12, 1972, pp 41-46

Abstract: The technology for producing refractories from materials capable of active sintering (ASM) is reviewed. Active sintering materials include magnesite, chromite, alumina, chamotte, and others. These materials should be ground to particles 10 µm in size in order to produce items of low porosity and high thermal stability. A vibrational mill is best suited for grinding or chromite powder per hour. Different types of presses are recommended for production of briquettes from ASM. Rotary-ring and tunnel-type furnaces are best suited for sintering of items produced from ASM. Refractory materials produced by the suggested method are characterized by low porosity, thermal stability, and high compressive strength. Numerical indicators of 1/1

Refractory Materials

USSR

UDG 666.764.32.001.5

KABAKOVA, I. I., DEGTYAREVA, E. V., and KAYNARSKIY, I. S., Ukrainian Scientific Research Institute of Refractories

"Extra-Compact Corundum Refractories"

Moscow, Ogneupory, No 1, Jan 71, pp 30-36

Abstract: The article describes a technique which has been developed for the fabrication of extra-compact corundum products from granulated uncalcined briquette, fabricated entirely from finely pulverized uncalcined commercial alumina. The products have a porosity of less than 3 percent, good thermomecnanical properties, creep strength, and resistance to reduction by carbon at high temperatures. Calcining conditions and charging methods were determined for products with a linear calcination shrinkage of up to 20 percent. It was found that corundum products can be calcined from granulated stock in a single-row charge according to an accelerated regime lasting about 45 hours, including hold-

1/2

KABAKOVA, I. I., et al., Ogneupory, No 1, Jan 71, pp 30-36

ing and cooling, as well as in a four-row-high charge in a two-stage process at 1300 and 1750° C. An experimental batch of checker-type products was produced, with none of the products displaying deformation despite shrinkage reaching 19.8-21.2 percent (linear).

2/2

. 32 -

1/2 030 UNCLASSIFIED TITLE--CORUNDUM REFRACTORIES -U-

PROCESSING DATE--27NOV70

AUTHOR-(03)-KAYNARSKIY, I.S., DEGTYAREVA, E.V., KABAKOVA, I.I.

COUNTRY OF INFO--USSR

SOURCE--OGNEUPORY 1970, 35(4), 46-53

DATE PUBLISHED ---- 70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--CORUNDUM REFRACTORY, COMPRESSIVE STRENGTH, GRAIN STRUCTURE,
THERMAL CONTRACTION, THERMAL CONTRACTION, THERMAL STABILITY, CARBON,
ANNEALING, REFRACTORY PRODUCT

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3006/0629

STEP NO--UR/0131/70/035/004/0046/0053

CIRC ACCESSION NO--APO134391

UNCLASSIFIED

HY MELLINE IN 2/2 -- 030 UNCLASSIFIED CIRC ACCESSION NO--APO134391 PROCESSING DATE--27NDV70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THIS IS ESSENTIALLY A REVIEW WORK PLUS NEW DATA AND RECOMMENDATIONS CONCERNING A NO. OF ASPECTS OF CORUNDUM REFRACTORIES. AMONG THE ITEMS COVERED ARE THE FOLLOWING: DEPENDENCE OF THE AL SUB2 O SUB3 CONTENT IN THE ARTICLES ON THE ADDN. OF TECH. GRADE ALUMINA TO NATURAL RAW MATERIAL CONTG. 35, 40, AND 45 PERCENT AL SUB2 D SUB3; COMPRESSION STRENGTH DE CORUNDUM PRODUCTS; CHANGE IN THE GRAIN COMPN. OF BALL BRIQUET MADE OF FINE GROUND ALUMINA AFTER FIRING IN A LAB, ROTARY FURNACE AT VARIOUS TEMPS.; DEPENDENCE OF THE SHRINKAGE OF SUCH A BRIQUET ON THE FINAL FIRING TEMP. AT VARIOUS HOLDING TIMES; SHRINKAGE DURING 2-STAGE ANNEALING (1300 AND 1750DEGREES) OF SPECIFIC DENSE CORUNDUM ARTICLES MADE OF GRANULATED BODIES; TABULATION OF PROPERTIES AND CHARACTERISTICS OF CORUNDUM CERAMICS; DEPENDENCE OF HEAT COND. COEFFS. OF CORUNDUM REFRACTORIES ON THEIR AV. HEATING TEMP. AND THE POROSITY; THERMOMECH. PROPERTIES OF CORUNDUM REFRACTORIES; AND THERMOPHYS. PROPERTIES AND STABILITY TO COF CORUNDUM REFRACTORIES. FACILITY: UKR. NAUCH.-ISSLED. INST. DGNEUPOROV, KHARKOV, USSR.

UNCLASSIFIED

USSR

AFONIKOVA, N. S., DEGTYAREVA, V. F. LITVIN, YU. A., RABIN'KIN, A. G., SAKOV, YU. A.

"Superconductivity and the Structure of Titanium Alloys with Niobium Subjected to Hydrostatic Pressures of up to 120 kilobars"

Leningrad, Fizika Tverdogo tela, Vol 15, No 4, 1973, pp 1096-1101

Abstract: A study was made of the structure and superconducting properties of Ti alloys with 10-90 atomic percent Nb subjected to pressures of up to 120 kilobars. Radiographic analysis indicated that in alloys with 10 and 20 atomic percent Nb under the effect of 30 and 50 kilobars of pressure, respectively, an ω -phase is formed and retained after loading in the metastable state at P = 1 atmosphere. This is accompanied by a significant drop in T of the alloys. In an alloy with 10 atomic percent Nb after treatment at P = 120 kilobars in the metastable state, the structure of 1 ω -phase was recorded. The structure and lattice parameters of the ω -phase obtained as a result of the pressure or ordinary heat treatment are similar; however, the formation of the ω -phase during heat treatment leads to a rise in T of the processes of formation of the ω -phase under pressure or during heat treatment. In alloys with 30 and 40 atomic percent Nb, the P = 120 kilobar effect also caused a 1/2

AFONIKOVA, N. S., et al., Fizika Tverdogo tela, Vol 15, No 4, 1973, pp 1096-1101

noticeable drop in T . This indicates the formation of an ω -phase in them which, as is known, does not occur in such alloys for any heat treatment conditions.

Conclusions are drawn from the presented data regarding the boundaries of the region of existence of the ω -phase in the titanium-niobium alloys at room temperature.

A schematic is presented of the region of stability of the ω -phase in P-C-coordinates at 300° K. The P-C-plane is divided into three regions: region I where there are structures corresponding to the initial state of the alloys after quenching and where the application of pressure still does not lead to the occurrence of the ω -phase; region II where the ω -phase exists combined with the initial phases and region III where one ω -phase is stable.

2/2

- 53 -

Corrosion

USSR

UDC: 620,199

TSINMAN, A. I., DEGTYAREVA, V. K., NEYMAN, N. S., KASSINSKAYA, L. L., KUZUB, V. S., and MURASHKINA, A. A., Severodonetsk Branch, State Institute of the Nitrogen Industry; Zhdanov Plant of Heavy Machinery

"Determining the Tendency of Kh18N1OT Chromium Nickel Steel to Intergranular Corrosion by the Method of Potentiostatic Etching"

Moscow, Zashchita Metallov, Vol. 6, no. 4, Jul-Aug 70, pp 475-478

Abstract: Commercial melts of Kh18N10T and OKh18N10T steels were used for elaborating the process of potentiostatic etching in order to determine the tendency of steel to intergranular corrosion (TIC). A total of 88 experimental melts have shown agreement of results of potentiostatic etching (PE) with the "AM" method specified in GOST 6032-58. The new method also makes it possible to observe the nature of dissolution on a longitudinal polished end. A curve in the original article shows anodic polarization of OKh18N10T steel at potential application rate of 1 v/hr in 20% $\rm H_2SO_4$, 50% $\rm H_2SO_4$, 1 n $\rm H_2SO_4$ + 0.003 n KCNS, 1 n $\rm H_2SO_4$ + 0.05 KCNS. Another figure showing the anodic polarization

1/2

TSIMAN, A. I., et al, Zashchita Metallov, Vol. 6, no. 4, Jul-Aug 70, pp 475-478

curve obtained on OKh18N10T steel in 50% H₂SO₁ at a potential application rate of 1 v/hr reflects the TIC of the steel. At a potential of 0.28 v a longitudinal ground end of steel with TIC, after 30 minutes of etching, showed a clear lattice of etched grain boundaries. For steels with a strongly pronounced TIC the intergranular etching pattern appears within 10-15 minutes.

2/2

I/2 QIQ UNCLASSIFIED PROCESSING DATE--IIDECTO
TITLE--SYNTHESIS AND REACTIONS OF N.N.BIS.2.THICCYANATOETHYL, ARYLAMINES

AUTHOR-(02)-LEGUTIS, YU.A., DUBINSKAYTE, D.

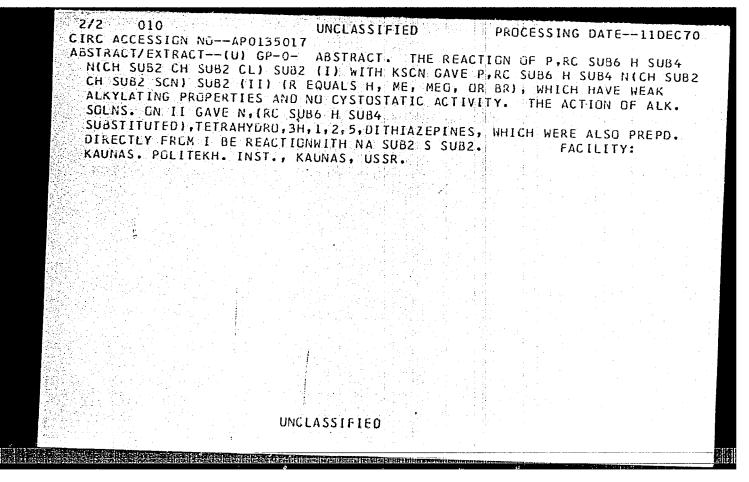
CCUNTRY OF INFC--USSR

SOURCE-ZH. ORG. KHIM. 1970, 6(5), 1003-5

DATE PUELISHEC ---- 70

SUBJECT AREAS -- CHEMISTRY

TOPIC TAGS--CHEMICAL SYNTHESIS, CHLORINATED ORGANIC COMPOUND, BROMINATED ORGANIC COMPOUND, BROMINATED AMINE DERIVATIVE, THIOL, CYANATE, AROMATIC AMINE,


CENTREL MARKING--NO RESTRICTIONS

DUCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3006/1343

STEP NO--UR/0366/70/006/005/1003/1005

CIRC ACCESSION NG-APO135017

UNCLASSIFIED

USSR

UDC 678.026.3

POLYAKOVA, V. M., <u>DEINEGA</u>, Yu. F. (Institute of Colloid Chemistry and the Chemistry of Water, UkrSSR Academy of Sciences)

"Preparation of Metallo-Polymer Coatings by Electrodeposition on a Cathode"

Kiev, Ukrainskii Khimicheskii Zhurnal, Vol 39, No 10, 1973, pp 988-992

Abstract: A new method is described for making metal-polymer coatings, these being formed by electrodeposition of polyelectrolytes with weakly basic properties and metals on a cathode. The polymer binders used were aminoformaldehyde resins. The mechanism of deposition of the polymer binder and its interaction with the metal at the time of deposition are discussed.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

UDC 546.882-31

KORNILOV, I. I., <u>DEKANFNKO, V. M.</u>, and VAVILOVA, V. V., Institute of Metallurgy imeni A. A. Baykov, Academy of Sciences USSR

"Effect of Titanium on Stabilization of Niobium Suboxides"

Moscow, Neorganicheskiye Materialy, Vol 9, No 11, 1973, pp 1964-1968

Abstract: The effect of titanium on the oxidizability of niobium was previously studied and a concept put forth that the increased heat resistance occurs due to stabilization of the suboxides at temperature above 700°C. In this work, alloys of niobium with oxygen (from 1 to 42 at% oxygen) were studied in which 2 at% titanium had been added. Alloying of niobium with titanium leads to an increase in the maximum content in the solid solution from 6 to 8 at% after quenching. Oxygen content in solid solutions after annealing at 500 and 700°C was 7 and 6 at%, respectively. At 500°C, Nb₂O decomposes from the solid solution as an excess phase during annealing and, at 700°C and above, significant widening of niobium lines on neutrograms which may be the result of oxide of the type Nb₆O. This unordinary behavior of oxygen in niobium with 2 at% Ti should render an effect on the mechanical properties of alloys of

- 20 -

KORNILOV, I. I., et al., Neorganicheskiye Materialy, Vol 9, No 11, 1973, pp 1964-1968

niobium with titanium and an increased oxygen content. 3 figures, 8 bibliographic references.

2/2

UDC 681.3.06.51

DEKANOSIDZE, Ye. N.

"Use of Algorithmic Language ALGOL-68 for Description of Economic Problems"

Tr. Vychisl. Tsentra. AN Gruz SSR [Works of Computer Center, Academy of Sciences, Georgian SSR], Vol, 9, No. 3, 1970, pp 5-15 (Translated from Referativnyy Zhurnal Kibernetika, No. 4, April, 1971, Abstract No. 4 V637 by V. Mikheyev).

Translation: The expediency of construction of translators from problem oriented languages is analyzed, considering the availability of a universal language and a translator for this language for new computers. It is considered more expedient to translate algorithms in the problem oriented languages into the universal language with subsequent translation. With this purpose in mind, the structures of problem oriented languages with equivalent structures to the universal language is studied and algorithms for translation of the former into the latter are presented on the example of the following economic problems: composition of a table indicating the total and mean working time, calculation of wages, determination of requirements for materials. The algorithms are formulated as procedures. Conversion problems are not studied. The problem oriented languages in the examples are languages for description of economic problems, ALGEK and ALGEM.

1/1

2

USSR

UDC 615.28:547.337.3

SHAPILOV, O. D., RACHINSKIY, F. YU., OSIPYAN, V. T., DEKEL BAUM, A. B., POTANENKO, T. G., KRUNENINA, A. A., Military Medical Academy imeni S. M. Kirov, Leningrad

"Hexamethyleneimonium Compounds Containing Alkoxy-, Hydroxyand Cyanoalkyl Substituents at the Quaternary Nitrogen Atom, and Their Bactericidal Properties"

Moscow, Khimiko-Farmatsevticheskiy Zhurnel, No 2, Feb 71, Vol 5, pp 19-22

Abstract: Hexamethyleneimonium compounds with alkyl, carbalkoxymethyl, phenoxyethyl and other substituents with 17 to 21 carbon atoms at the N exhibit marked bactericidal action; ammonium compounds with alkoxymethyl groups at the quaternary nitrogen atom are both good bactericides and highly water-soluble.

The author obtained a number of hexamethylimonium compounds by alkylation of tertiary derivatives of hexamethylenimine, and also some highly water-soluble compounds through synthesis of substances 1/2

- 42 -

USSR

المحاربة المدرية

SHAPILOV, O. D., et al, Khimiko-Farmatsevticheskiy Zhurnal, No 2, Feb 71, Vol 5, pp 19-22

with cyanoethyl and cyanomethyl groups at the queternary nitrogen atom. Thirty-six compounds in all were studied for bactericidal and other properties.

Some 30 of these were quite effective against E. coli and Staphylococcus aureus, and were moderately or highly water-soluble. Physical and bactericidal properties are given in the paper.

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

ANO017111-

UR9013

AUTHOR --

DEKHANOV, N., DEPUTY DIRECTOR FOR RESEARCH OF THE UKRNIISPETSTAL, MERITOREOUS METALLURGICAL ENGINEER OF THE UKSSR, PROFESSOR, DOCTOR OF TECHNICAL SCIENCES

TITLE --

TIED UP MILLIONS

NEWSPAPER -- PRAVDA UKRAINY, FEBRUARY 10, 1970, P 2, COLS 4-8

ABSTRACT -- THE AUTHOR AIRS OUT GRIEVANCES AGAINST THE MINISTERIAL RED TAPE WHICH HOLDS BACK SOME DEVELOPMENTS AT THE UKRAINIAN SCIENTIFIC-RESEARCH INSTITUTE FOR SPECIAL STEELS, ALLOYS AND FERRO ALLOYS.

 η_{t}

19600316

1/2 024 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--ENZYMATIC DIAGNOSIS OF ACUTE PANCREATITIS -U-

AUTHOR-(04)-LEVITSKIY, A.P., SYNOVETS, A.S., DEKHTYAR, A.L., TSVIRKUN,

COUNTRY OF INFO--USSR

SOURCE--KHIRURGIYA, 1970, NR 2, PP 94-98

DATE PUBLISHED ---- 70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--PANCREAS, ENZYME ACTIVITY, AMYLASE, BLOOD SERUM, URINE, DIAGNOSTIC METHOD, DIGESTIVE SYSTEM DISEASE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1983/1328

STEP NO--UR/0531/70/000/002/0094/0098

CIRC ACCESSION NO--APO054212

UNCLASSIFIED

2/2 024 UNCLASSIFIED PROCESSING DATE--18SEP70

ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE AUTHORS INVESTIGATED THE ACTIVITY OF AMYLASE (SMITH AND ROE MICROMETHOD), PROTEASE UTKINYKH LYNBOYTSEVYKH METHOD IN SHIERGE'S MODIFICATION) AND LIPASE (LEVITSKY'S COLORIMETRIC MICROMETHOD) IN THE BLOOD SERUM OF CATS WITH EXPERIMENTAL ACUTE PANCREATITIS. THERE WERE A SIGNIFICANT RISE OF THE ACTIVITY OF PANCREATIC LIPASE, INESSENTIAL INCREASE OF THE PROTEASE LEVEL, SHORT TERM RISE AND SUBSEQUENT SHARP DECLINE OF THE AMYLASE ACTIVITY. DETERMINATION OF THE REFERRED TO ENZYMES IN THE BLOOD SERUM AND AMYLASE IN THE URINE OF PATIENTS WITH ACUTE PANCREATITIS THE AUTHORS NOTED A SIGNIFICANT INCREASE IN THE ACTIVITY OF LIPASE AND AMYLASE AND AN INSIGNIFICANT INCREASE OF THE PROTEASE ACTIVITY. A STABLE ACTIVITY RISE WAS OBSERVED IN RESPECT TO LIPASE. THE BLOOD AMYLASE ACTIVITY SEVERAL DAYS AFTER THE ONSET OF THE DISEASE DROPPED ALMOST TO NORMAL VALUES, HOWEVER THE URINARY LEVEL OF AMYLASE WAS STATISTICALLY SIGNIFICANT ABOVE NORMAL LEVELS. THE AUTHORS ALSO DETERMINED THE BLOOD SERUM ACTIVITY OF LIPASE AND AMYLASE, AND URINARY LEVEL OF AMYLASE IN PATIENTS WITH ACUTE CHOLECYSTITIS, APPENDICITIS AND GASTRODUODENAL PEPTIC ULCER. THE NONSPECIFICITY OF THE ACTIVITY OF VLOOD AMYLASE WAS ESTABLISHED. INCIDENCE OF RISE OF THE BLOOD SERUM ACTIVITY OF LIPASE IN ACUTE PANCREATITIS AMOUNTED TO SOPERCENT OF CASES, THAT OF URINARY AMYLASE, TOPERCENT. FOR THE DIAGNOSIS OF ACUTE PANCREATITIS THE AUTHORS RECOMMEND THE DETERMINATION OF BLOOD SERUM PANCREATIC LIPASE ALONG WITH THAT OF URINARY AMYLASE.

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

uśsr

DEKHTYAR, A. S., VARVAK, M. SH.

"Limiting Equilibrium of Flat Shells under the Effect of a Load Distributed over Part of the Surface"

Issled. po stroit. mekh (Structural Mechanics Research), Tbilisi, Metsni-yereba Press, 1970, pp 94-103 (from RZh-Mekhanika, No 11, Nov 70, Abstract No 11V409)

Translation: This article contains a study of the limiting equilibrium of freely supported square and round shells in the plan view made of an ideal rigid-plastic material. It is assumed that exhaustion of the supporting capacity is accompanied by the formation of plastic hinges along certain lines on the surface. The upper bound of the supporting capacity is found by the kinematic method of the theory of limiting equilibrium. Exhaustion of the supporting capacity is also studied in connection with stamping of the shell.

The mid surface of a flat shell which is square in the plan view is assumed in the form of a paraboloid of rotation

1/2

$$z = f(x^2 + y^2)/a^2$$

DEKHTYAR, A. S., et al., <u>Issled. po stroit. mekh</u> (Structural Mechanics Research), Tbilisi, Metsniyereba Press, 1970, pp 94-103

where 2f is the rise of the shell at the center; 2a is the length of the side of the shell in the plan view. The shell has a constant thickness δ . Its edges can be shifted freely in the horizontal direction. The vertical load is distributed uniformly over part of the surface. The horizontal projection of the loaded area has the shape of a square, and it is arranged symmetrically with respect to the center of the shell. The shell material follows the idealized Mises diagram. In addition, it is assumed that $\sigma^+ << \sigma^-$. Here σ^+ and σ^- are the tensile and compressive yield strengths of the material, respectively.

2/2

- 85 -

Acc. Nr: A70046315 Abstracting Service: 5/76 Ref. Code: A70046315 INTERNAT. AEROSPACE ABST. UR044/

A70.23388 Minimum edge reinforcement of shells with an axial symmetry (Minimal'ne konturne pidtriplennia ostsimetrichnikh obolonok). A. S. Dekttig and M. Sh. Varvak (Naukovo-Onsfidnii Institut Budivel'nikh Konittuksii. Ukrainian SSR). Akademiis Nauk Ukrainix Roi RSR, Dappovidi, Seriia A-Feiiko Tekhichni i Mazematichni Nauki, vol. 32, Jan. 1970. p. 48-50. In Ukrainian.

The -influence of contour mobility is investigated upon the load-carrying capacity of rigid-plastic thin shells of revolution. If the edges are fixed and cannot move in horizontal direction, the limit load intensity is increased by 2.3 times. A minimum reinforcement value is established which leads to such an immovable contour.

(Author) Aks

+4

USSR

UDC: 616.22-008.4-789.28-78

PUPKO, I. D., ULASHKEVICH, Yu. V., MAGRACHEV, A. Z., BOPONETS, V. P., DOLGOV, V. K., LAPSHIN, V. A., DEKHTYAR, B. S., VAYNSHTEYN, A. M.

"A Voice-Forming Device"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 28, 1970, Soviet Patent No 280548, Class 21, filed 9 Jun 69, p 42

Abstract: This Author's Certificate introduces a voice-forming device which contains a main current generator, projector and self-contained power supply. As a distinguishing feature of the patent, the sound spectrum of the projected oscillations is approximated to that of natural speech by adding a noise generator, a noise amplifier, and an operating mode commutator.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

USSR-

UDC 539.2

DEKHTYAR. I. Ya., and NEMOSHKALENKO, V. V. Elektronnaya Struktura i Elektronnyye Svoystva Perekhodnykh Metallov i ikh Splavov (Electron Structure and Electronic Properties of Transition Metals and Their Alloys, Izd-vo "Naukova Dumka", Kiev, 1971, 304 pp

Translation of Annotation: This monograph deals with the most recent investigations in the field of the electron structure of transition metals and their alloys. Reported and analyzed are recent models of the electron structure of transition metals, results obtained with the help of new physical investigation methods of the electron structure of transition metals (gamma-resonance spectroscopy, positron spectroscopy, and others), and such classical methods as x-ray spectroscopy, electron heat capacity, and magnetic susceptibility. Laboratory results obtained by the authors are discussed. The book is intended for physicists working in solid-state physics, materials specialists working in the development of new materials, aspirants and students taking advanced courses in physics, metal physics, and metallurgy.

Translation of Table of Contents:

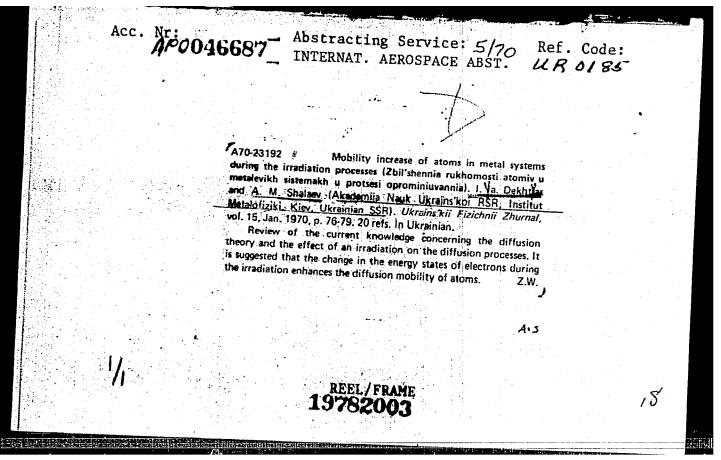
Foreword

Chapter 1. Models of the electron structure of transition metals

Sect. 1. Models of collectivized electrons

5 6

1/5


TYPVUMVAD 1	T Vo and MEMOCHICALENTO W W The angle flag to D to 1 and 2	:
DERILLIAN, .	I. Ya. and NEMOSHKALENKO, V. V., Izd-vo "Naukova Dumka", 1971,	304 pp
Sect. 2.	Models of s-d exchange interaction	16
Sect. 3.		19
Sect. 4.	Phenomenological theories of magnetic properties of 3-d	
	metals	23
Sect. 5.	Ferromagnetism of diluted solid solutions	3Ŏ
Chapter 2.	Gamma-resonance spectroscopy of alloys of transition metals	35
	Magnetic hyperfine interaction	36 41
	The effective field in diluted solid solutions	41
Sect. 3.		
	on Moessbauer spectra in ferromagnetic alloys	48
Sect. 4.	Quadrupole interaction	53
Sect. 5.	Gamma-resonance spectra Fe ⁵ / in iron alloys	53 56
Sect. 6.		60
Sect. 7.	Magnetic conversions in alloys of transition metals	69
Sect. 8.	Investigation of the electron structure of the surface	
	of transition metals	74
Chapter 3.		79
Sect. 1.	Angular correlation of gamma-quanta in metals	81
2/5		

- 61 -

DEKHTYAR	T Vo and Millioning The	
	I. Ya. and NEMOSHKALENKO, V. V., Izd-vo "Naukova Dumka", 1971,	304 r
Sect. 2.	Annihilation of positrons and electrons in ordering alloys	ol.
Sect. 3.		94
Sect. 4.		98 103
Dece. 5.	Annihilation of positrons and oler-	108
Sect. 7.	The state of the s	111
	The contract of the contract o	
	on the shape of curves of the angular correlation of gamma-quanta	
Sect. 8.	Some regularities of the electron distribution in	112
	orgupt of oil life Pat 8	_ •
Sect. 9.	Further development of positron spectroscopy	134
mpoct 4.	A-14y CIIISSION Spectroscopy	143
Sect. 1.	The form and the main parameters of K. I. and M hands	147
	or crements of the lirst large period	149
Sect. 2.	The correlation of K. L. and Mesnectra of elegents of	177
Soot 3	or control of Selelilli	166
Sect. 3.	Interpretation of the K\$\beta_{2,5}\$-band	170
Sect. 4.	The "white line" in L2,3-absorption spectra of transition	-,-
	d-metals 2,3-absorption spectra of transition	3.00
/5		175

USSR ·			
DEKHTYAR,	I. Ya. and NEMOSHKALENKO, V. V., Izd-vo "Naukova Dumka", 1971,	304 pp	
Sect. 5.	crystal continuous of atoms in the	200	
Sect. 6.	L- and M-bands of elements of the second large period	179	
DCCC.	THE TELEVILLE INTENSITIES OF lines of I and W and the	186	
Sect. 8.	Alloys of transition metals and the model of the hard band	201	
Chapter 5.	The electron low-temperature specific heat	204	
Sect. 1.	Experimental values of the gamma coefficient for transient	213	
	d-metals		
Sect. 2.	Alloys of d-metals	215	
Sect. 3.	Alloys of two isoelectronic transition elements	219	
Sect. 4.	Binary alloys of d-metals with non-transition elements	225	
Chanter 6.	Paramagnetic properties and the non-transition elements	227	
	Paramagnetic properties of transition metals and their alloys		
Sout 1		231	
Decr. 1.	Some regularities in the change of the paramagnetic sus-	•	
	cepulbility of transition metals	232	
pect. 2.	The effect of imperfections of the crystalline structure		
	on the paramagnetic properties of transition metals and		
	their alloys	241	-
4/5		t. F.L	
'17			
	- 62 -		

DEKHTYAR, I. Ya.and NEMOSHKALENKO, V. V., Izd-vo "Naukova Dumka", 1971, 304 pp								
Sect. 4.	The effect of imper	ions with localized fections of the cry	magnetic moments	252				
Sect. 5.	The model of the har	rd band and	utions netic properties	272 of				
Bibliography	07.01	I ME CRIS		281 289				

WC 669.017.538.22

DEKHTYAR, H. V., Moscow State University imeni M. V. Lomonosov

"Temperature Dependence of Magnetic Properties of Ferrocobalt Alloy Near and Below the Critical Temperature"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 33, No 4, Apr 72, pp 746-

Abstract: A study was made of the kinetics in the process of development of the ordered structure & -FeCo and the temperature dependence of the magnetic properties of a ferrocobalt alloy with 50 at.% Co. The anomalous character of this dependence, found in the temperature interval of 550-730°C, is analyzed. It is shown that the recrystallization, structural stresses, magnetic anisotropy, and magnetostriction cannot cause the anomalous temperature dependence. According to J. B. Goodenough ("Fagnetism and the Chemical Bond," N. Y.-Id., 1963), this anomaly can be explained by the metamagnetic character of the exchange reaction in ordered alloys. Four illustrations, twenty-two bibliographic references.

1/1

- 62 -

1/2 016 ITLE--EFFECT OF ORDERING ON MAGNETIC PROPERTIES OF FECO WITH AN

UNCLASSIFIED

PROCESSING DATE--LISEP.70

AUTHOR-DEKHTYAR, M.V.

COUNTRY OF INFO--USSR

SOURCE--UKR. FIZ. ZH. (RUSS. ED.) 1970, 15(1) 120-3

DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--SATURATION MAGNETIZATION, COBALT IRON ALLOY, ORDEPED ALLOY,

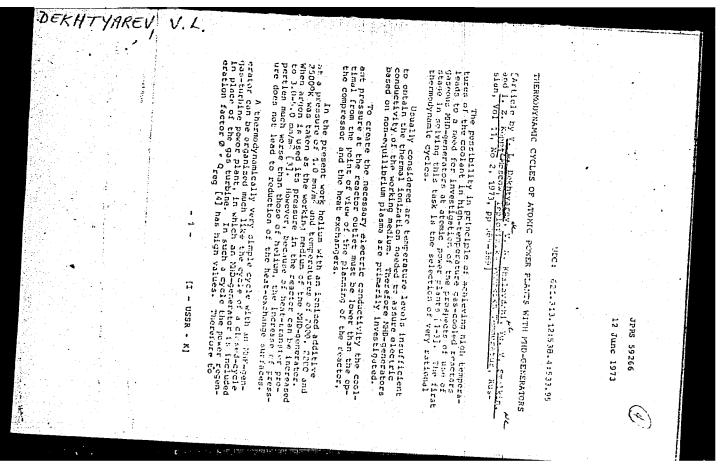
CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REFL/FRAME--1989/1341

STEP NO--UR/0185/70/015/001/0120/0123

CIRC ACCESSION NO--AP0107814 2222222222

UNCLASSIFIED



POVELYTSYA, F. D., DEKHTYAR W. v. and GURAL', A. G., Kiev Scientific Research Institute for the Advanced Training of Physicians, Kiev

"The Effect of Antibiotics on Immunity in Brucellosis"

Kiev, Mikrobiologicheskiy Zhurnal, Vol 33, No 6, Nov/Dec 71, pp 786-787

Abstract: A number of investigators have noted that therapy of bacterial infections with antibiotics inhibits the development of postinfection immunity. The effects of intramuscular administration of streptomycin on the specific and nonspecific immunity of rabbits infected experimentally by intramuscular reaction of Br. abortus 544 were studied. The agglutinin titer in Wright's reaction, the complement titer of the serum, the lysozyme level, the bacteridatermined. The results showed that streptomycin lowered the specific immunity when administered in the first days after infection, because it reduced the amount of antibodies that formed, as indicated by the agglutinin titer. It did not affect the nonspecific immunity, because the indexes of this lysozyme level, and the sialic acid content) were not changed vs. those of 1/1

USSR

DEKHTYARENKO, V. A.

"Algorithm for Formation and Processing of Expert Evaluations in the Solution of Problems of Prediction in Complex Systems"

Kibernetika i vuz. [Cybernetics and the University -- Collection of Works], No 4, Tomsk, 1971, pp 108-115, (Translated from Referativnyy Zhurnal, Kibernetika, No 3, 1972, Abstract No 3 V464).

NO ABSTRACT.

1/1

- 47 -

STAROSEL'SKIY, V. A., DEKHTYARENKO, V. A.

"Use of Heuristic Methods in Modeling and Optimization of Complex Systems"

Kibernetika i vuz [Cybernetics and the University -- Collection of Works], No 4, Tomsk University Press, Tomsk, 1971, pp 116-122, (Translated from Resume).

Translation: Various approaches are discussed to the problem of finding an adequate mathematical description for complex systems, the area of application of heuristic methods in combination with statistical modeling.

1/1

- 36 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

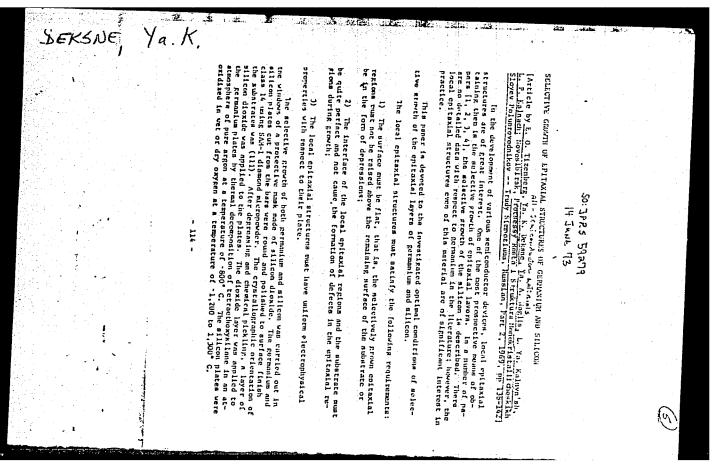
US'SR

UDC 669.243

CAL'NBEK, A. A., YUZHANINOV, I. A., DEKOPOV, YU. D., and

"Examination of the Process of Continuous Converter Blowing of

Moscow, Tsvetnyye Metally, No 2, Feb 71, pp 18-21


Abstract: The article considers results of the first phase of investigations of continuous converter blowing of ferronickel conducted at the Leningrad Mining Institute in cooperation with the "Gipronikel' " Institute. The basic regime characteristics of the process are determined. Conversion to the continuous process carried out in vertical converters. Blowing is carried out in the following manner: after arc firing of the furnace up furnace ferronickel. Then the bath is preheated to 1500-1550°C furnace, the electrode holes are filled with refractory chokes,

- 31 -

GAL'NBEK, A. A., et al., Tsvetnyye Metally, No 2, Feb 71, pp

and positioning of the tuyere blast is conducted. Blowing begins at a bath temperature of 1350-1450°C. The blast in experiments varied from 1.5 to 3.2 m³/min at different degrees of carburization.

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

USSR

UDC 577.4

DEKSNIS, G. K.

"Certain Problems in the Coding of the Internal States of an Asynchronous Finite Automaton"

V sb. Vopr. sinteza konechn. avtomatov (Problems in the Synthesis of Finite Automata -- Collection of Works), Riga, "Zinatne", 1972, pp 9-19 (from RZh-Matematika, No 9, Sep 72, Abstract No 9V404)

Translation: An asynchronous finite automaton is coded according to separate input signals r_1 ($l = 1, 2, ..., \beta$) in order to avoid critical conflicts.

The coding of various k-sets of states of the automaton by coded words with a minimal spread of unity is discussed. Rules for determining the length of a compound code word

$$(n = \sum_{l=1}^{\beta} n_l)$$
 by the Sagalovich method)

are explained. Certain improvements in the Lewe method are proposed. An algorithm for finding identically coded columns of the transition table is developed. Authors abstract.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

USSR

UDC 577.4

DEKSNIS, G. K.

"Some Problems of Encoding the Internal States of an Asynchronous Finite Automaton"

V sb. Vopr. sinteza konechn. avtomatov (Problems of Synthesizing Finite Automata -- collection of works), Riga, Zinatne Press, 1972, pp 9-19 (from RZh-Kiber-netika, No 9, Sep 72, Abstract No 9V404)

Translation: An asynchronous finite automaton is encoded in accordance with individual input signals r_{ℓ} ($\ell=1,2,\ldots,\beta$) in order to eliminate critical controversies. A study was made of the encoding of various k-sets of states of an automaton by code words with minimum distance of one. The laws of determination of the length of the composite code word are discovered ($n=\beta$

= Σ n₂ by the Sagalovich method). Some improvements of the L'yu method are

proposed. An algorithm is developed for searching identically encoded columns of a transition table.

1/1

- 24 -

USSR 1

UDC 620.10

DEL', G. D., Doctor of Technical Sciences, Professor, and TSUKUBLINA, K. N., Graduate Student, Voronezh Polytechnical Institute

"Experimental-Calculation Determination of Stresses During Axisymmetrical Plastic Deformation"

Izvestiya Vysshikh Uchebnykh Zavedeniy, Mashinostroyeniye, No 11, 1971, pp 8-13.

ABSTRACT: This article presents a method for determination of stresses during axisymmetrical plastic deformation which does not include the assumption of equality of circumferential stress to one of the other two main stresses. Experimental data for determination of stresses used include the field of circumferential logarithmic deformations, the field of stress intensities and deformation intensities. The method consists of numerical solution of a hyperbolic system of equations using the experimental data. The method is used to determine the stressed state upon penetration of a spherical stamp and a blunt cone (angle at tip 120°) with and without consideration of forces of friction.

1/1

- 107 -

UDC 539.374

USSR

OGORODNIKOV, V. A., DEL', V. D.

"Deformed State Under the Sagging of Hollow Cylinders"

Izv. Tonsk. politekhn. in-ta (News of Tomsk Polytechnical Institute), 1972, Vol. 225, pp 48-52 (from RZh-Mekhanika, No 8, Aug 72, Abstract No 8V391)

Translation: The results of an experimental study of the deformed state arising under the sagging of hollow cylinders are presented. The stress intensity and the deformation intensity distributions were measured when studying the axisymmetric deformed state by measuring the hardness of the sample using experimental calibration graphs for hardness vs. stress intensity. The values of the deformation components were determined by using differential equations for the axisymmetric deformation process and the values of the defermations on the inner surface of the hollow cylinder were used as a boundary condition. The values of deformations in a sagged sample were determined by applying numerical methods on the "Minsk-1" computer. Tables are given showing the dimensions of the deformed samples, the degree of their sag, and the values of their circumferential deformations obtained by computation and by measurements in the sample. Graphs

1/2

CIA-RDP86-00513R002200620010-8"

APPROVED FOR RELEASE: 08/09/2001

USSR

OGORODNIKOV, V. A., DEL', V. D., <u>Izv. Tomsk. politekhn. in-ta</u>, 1972, Vol. 225, pp 48-52

of the distribution of radial and circumferential deformations are constructed for different degrees of sag and the dimensions of the sagged hollow cylinders. It is pointed out that the Haar-Karman hypothesis on the equality of circumferential stress to one of the major stresses in the meridional plane is contradicted by the experimental data of the article. Ye. M. Tret'yakov.

USSR

UDC: 8.71

DEL', V. D., KALINICHENKO, G. D.

"Floating Decimal Programming for the Minsk-l Digital Computer. Textbook"

Programmirovaniye s plavayushchey zapyatoy dlya tsifrovoy vychislitel'noy mashiny Minsk-1. Uchebn. posobiye (cf. English above), Tomsk Polytechnical Institute, Tomsk, 1971, 49 pp, 20 k., mimeo. (from RZh-Kibernetika, No 1, Jan 72, Abstract No 1V950 K)

[No abstract]

1/1

1/2 017 UNCLASSIFIED PROCESSING DATE--090CT70
TITLE--STANDARDIZATION IN TELEVISION: HISTORY AND PROSPECTS -U-

AUTHOR-DELBOR, 1.

COUNTRY OF INFO-USSR, WORLD WIDE

SOURCE-STANDARTY I KACHESTVO, 1970, NR 4, PP 88-91

DATE PUBLISHED -----70

SUBJECT AREAS-NAVIGATION, BEHAVIORAL AND SOCIAL SCIENCES

TOPIC TAGS-TV SYSTEM, TECHNICAL STANDARD, INTERNATIONAL AGREEMENT

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1985/1764

STEP NU--UR/0422/70/000/004/0088/0091

CIRC ACCESSION NO--APO101811

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

2/2 017	UNCLÁSSIFIED	PROCESSING DATE090CT	70
CIRC ACCESSION NOAPOLO1	1811		
ABSTRACT/EXTRACT(U) GP-	-O- ABSTRACT. THE ART	ICLE DESCRIBES THE	
DEVELOPMENT HISTORY OF	STANDARDIZATION AND NA	TIONAL STANDARD	
SPECIFICATIONS IN THE P PROSPECTS FOR AN INTERA	ANTIONAL STANDARDIZATIO	N DEVELOPMENT IN THIS	
DOMAIN.	MITORAL STARDARDIES. 10		
	사용 등 사람들은 함께 되었다면 되었다.		
	그는 그 등 환경을 가면 이 강하는데		
(基本) 사람이 되었다. 			
		그 맛집 하는 것이 없는 것이 없다.	
			•
			-
선택되는 이 경기에 있는 것으로 하는데 보고 있다. 선택되는 것으로 하는데 하는데 하는데 보고 있다.			
	UNCLASSIFIED		
	UNCLASSIFIED		
			(2) 计(1) 数据

1/2 019 UNCLASSIFIED PROCESSING DATE--11SEP70
TITLE--EXPERIMENTAL YAWS AND ELECTRON MICROSCOPY OF TREPONEMA PERTENUE -U-

AUTHOR-OVCHINNIKOV, N.M., DELEKTORSKIY, V.V., KENIGSBERG, T.L.

COUNTRY OF INFO--USSR

SOURCE--VESTNIK DERMATOLOGII I VENEROLOGII, 1970, NR 4, PP 42-49

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--ELECTRON MICROSCOPY, RABBIT, TUBERCULOSIS, INCCULATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/1733

STEP NO--UR/0206/70/000/004/0042/0049

CIPC ACCESSION NO--AP0109694

ZZZZZZZZZZZZZ UNCLASSIFIED

PROCESSING DATE--11SEP70 UNCLASSIFIED 2/2 019 CIRC ACCESSION NO--APO109694 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. RABBITS WERE INOCULATED INTRACUTANEOUSLY IN THE SCROTUM AND INTRATESTICULARLY AND GOLDEN HAMSTERS INTRACUTANEOUSLY IN THE INCUINAL AREA WITH A SUSPENSION OF TREPONEMA PERTENUE. HAMSTERS FAILED TO SHOW ANY CLINICAL MANIFESTATIONS WEREAS RABBITS, REGARDLESS OF THE WAY OF INOCULATION, DEVELOPED ON SCROTUM DENSE TUBERCULOUS NODES MOST FREQUENT ON TUNICA DARTOS VARYING IN SIZE FROM A MILLET GRAIN TO A CHERRY OR EVEN A PLUM. WASSERMANN, KAHN, CYTOCHOLIN TESTS, AS WELL AS IMMOBILIZATION AND IMMUNOFLUORESCENCE TESTS BECAME POSITIVE. EXAMINATION OF TREPONEMA. PERTENUE IN THE DARK FIELD AND IN ELECTRON MICROSCOPE USING NEGATIVE STAINING AND ULTRATHIN SECTION METHODS REVEALED GREAT SIMILARITY TO T. PALLIDUM, T. PERTENUE WAS FOUND TO HAVE CYSTS, BUT THEY HAD A ONE OR TWO LAYER COMMON MEMBRAINE AND NOT A THREE LAYER MEMBRANE LIKE THE FORMER. THE COVER OF T. PALLIDUM IS MORE MANIFEST, THE ENDS OF T. PALLIDUM ARE MORE EXTENDED AND THE DISTANCE TO BLEFAROPLASTS IS LONGER, BUT THESE DISTINCTIVE SIGNS ARE UNRELIABLES. FACILITY: MIKRORIOLOGICHESKIY OTDEL TSENTRAL*NOGO N.I KOZHNO, VENEROLOG INSTITUTA MINISTERSTVA ZDRAVOOKHRANENIYA SSSR, MOSCOW.

777777777777

UNCLASSIFIED

USSR

DELIMARSKTY, YU. K., Member, Academy of Sciences USSR, Editor-in-Chief

Elektrokhimecheskoye Rafinirovaniye Tyazhelykh Legkoplavkikh Metallov iz Rasplavlennykh Soley (Electrochemical Refining of Heavy Low-Melting Metals From Fused Salts), Kiev, "Naukova Dumka," 1971, 192 pp

Translation of Annotation: This collection deals with the theory and practice of electrolytic preparation and purification of lead, bismuth, antimony, tin, zinc, and other light metals. Analyses of various refining methods are presented, and results are given of investigations of the kinetics of electrode processes and the thermodynamic properties of salt melts and liquid alloys.

This book is intended for engineers and technical personnel in the field of metallurgy and for persons working in scientific institutes and universities.

Translation of Table of Contents: DELIMARSKIY, YU. K., "Refining Heavy Easily Melted Metals From Fused Salts"	Page
GUL DIN, I. T., "Mechanism of Cathode Reduction of Caledan M.	3
in Fused Salts and Some Prospects for Using This Process for Direct Recovery of Heavy Metals From Concentrates" CHERNOGORENKO, V. B., "Bismuth and the Prospects for Its Application" 1/5	16 28

USSR	
DELIMARSKIY, YU. K., Elektrokhimecheskoye Rafinirovaniye Tyazhelykh Legkoplevkikh Metallov iz Rasplavlennykh Soley, "Naukova Dumka," 1971,	192 pp
MORACHEVSKIY, A. G., "Thermodynamic Properties of Liquid Alloys in the Lead-Sodium, Bismuth-Sodium, and Lead-Bismuth-Sodium Systems" KOLOTIY, A. A., "Application of Lead-Sodium and Lead-Glass-Sodium Electrodes for the Study of the Electronic Properties of Platinum in Fused Chlorides	37
DELIMARSKIY, YU., OGNYANIK, S. S., TUMANOVA, N. KH., SHILINA, G. V., PAVLENKO, N. A., and PENKALO, I. I., "Polarography of Ion Melts in Light Metallurgy"	41
VELIKANOV, A. A., MUSTYATSA, O. N., SHEVCHUK, P. P., and MIRONYUK, G. I., "Electrophysical and Electrochemical Properties in Malta	47
MINDIN, V. YU., and AGLANZE, R. I., "Measuring the Polarization Voltage and the Separate Potentials During the Floatisation	52
POLYAKOV, P. V., SHURIGIN, P. M., ORLOV, A. M., and KOTEL'NIKOVA, G. A., "A Study of the Galvanostatic Phase-Generating Process."	57
the Isolation of Liquid Metals in Melts"	64

DELIMARSKIY, YU. K., Elektrokhimecheskoye Rafinirovaniye Tyaxhelykh Legkoplavkikh Metallov iz Resplavlennykh Soley, "Naukova Dumka," 19	71, 192 pp
ROZLOVSKIY, A. A., and GUL'DIN, I. T., "The Structure of a Series of Voltages of Metals in the Fused Electrolyte System KC1-NaC1" DELIMARSKIY, YU. K., and SAMODELOV, A. P., "Electrode Processes	71
During Cathode-Anode Refining of Tin and Lead in Chloride Salt Melts"	81
DELIMARSKIY, YU. K., SAMODELOV, A. P., and KONTOROVICH, E. A.,	
"Electrochemical Refining of Black Tin, Lead, and Tin-Lead Alloys in Fused Chlorides"	93
ZARUBINTSKIY, O. G., KHOROSHIKH, N. N., and SALABAY, O. A., "Electrolytic Refining of Alloys of Bismuth in Alkali Melts" GOL'DSHTEYN, S. L., KAZANTSEV, G. N., LEBEDEV, V. A., RASPOPIN,	102
S. P., and NICHKOV, I. F., "Potentiostatic Preparation and	109
Solution of Tin-Bismuth Alloys in Chloride Melts" SUTURIN, S. N., KHOROSHIKH, N. N., and KLEVAKIN, A. A.,	109
"Extraction of Bismuth From the Products of Tin Production" BARCHUK. V. T., SHEYKO, I. N., and GRECHINA, T. N., "Using the	113
Interaction Between Zirconium Dichloride and the Chloride Melts of Alkali and Alkaline Earth Metals"	116

DELIMARSKIY, YU. K., Elektrokhimecheskoye Refinirovaniye Tyazhelykh Legkoplavkikh Metallov iz Rasplavlennykh Soley, "Naukova Dumka," 1971, 1	92 pp
BANDUR, T. A., and SHEYKO, I. N., "Hydroprocessing of Cathode Precipitates of Zirconium With the Separation of Solid Phases" AGLADZE, R. I., and MINDIN, V. YU., "The Question of Anode Solution of Double and Ternary Manganese Alloys Containing Carbon, Iron, and	124
Nickel in Fused Electrolytes" NICHKOV, I. F., NOVIKOV, YE. A., RASPOPIN, S. P., and SEREBRYAKOV,	130
G. A., "The Behavior of Zinc in Chloride and Chloride-Fluoride Melts" DUBININ, V. A., NICHKOV, I. F., NOVIKOV, YE. A., and RASPOPIN, S. P., "Electrode Processes During the Refining of Zinc in Chloride and	138
Chloride-Fluoride Melts" TARASOV, A. V., and GUL'DIN, I. T., "Influence of Some Factors on the Yield of the Current During the Refining of Zinc by Electrolysis in	146
Salt Melts" ROZLOVSKIY, A. A., BULDAKOV, A. A., YEFIMOV, G. N., and DEMINA, I. V.,	152
"Electrolytic Refining of Antimony in Salt Melts" SHABDENOV, B. A., and VOLEYNIK, V. V., "Electrochemical Oxidation of	157
Vanadium Compounds With Metalloids in Chloride Melts"	163

DELIMARSKIY, YU. K					
Legkoplavkikh Meta	LLOV 12 Kasplavi	ennykh Soley,	"Naukova I	Jumka," 197	1, 192 pp
BULDAKOV, A. A., R "Stability of Re DELIMARSKIY, YU. K	fractory Materia	ls in Antimon	y-Salt Melt	ເຣ"	169
the Migration of Alkali Melts"					
					-1-

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

USSR

DELIMARSKIY, YU. K., and VDOVENKO, I. D., Editors

Korroziya i Zashchita Metallov (Corrosion and Protection of Metals), Kiev, Naukova Dumka, 1972, 128 pp

Translation of Annotation: This collection of articles contains new information on the theory of rapid annealing. Problems are discussed on production of new polymeric coatings along with the corrosion stability of structural materials in media containing aggressive chloride compounds. Data on the electrochemical behavior of molybdenum, titanium, and of other metals during anode polarization in chromium sulfate solutions are presented.

Works on electrodeposition of the corrosion-resistant indium-antimony and magnetic cobalt-nickel-phosphorus alloys with predetermined properties are also included in this collection.

The book is intended for engineers and technicians of the metallurgical, machine-building, chemical, food, and other branches of industry working on problems of corrosion and protection of metals from corrosion.

Table of Contents:

Page

DELIMARSKIY, YU. K., MAKOGON, V. F., and CHETVERIKOV, A. V., "Production of Aluminum Coatings by Electrolysis"

3

1/6

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"

는 USSR 이 경기 등을 보고 있는 것이 되었다. 그는 것은 경기에 들어 들어 되었다. 그 것이 되었다. 문화로 보다 가능하는 것이 되었다. 그는 것이 되었다. 그 것이 되었다.	
	,
DELIMARSKIY, YU. K., and VDOVENKO, I. D., Korroziya i Zashchita Metallov, Naukova Dumka, 1972, 128 pp	
LYAKHOVICH, YE. F. (Deceased), "Electrodeposition of Some Metals	
From Salt Solutions" EESPAL'KO, O. P., and VDOVENKO, I. D., "Galvanic Indium-Antimony	• ."
Coatings"	
GRITSAN, D. N., SHATROVSKIY, G. L., LARIN, V. I., and DYCHENKO, V. M., "The Effect of Surface-Active Substances on Electro-	
deposition of Zinc From Sulfate Solutions" YEFREMOVA, L. A., and KHOLMYANSKIY, V. A., "Structure of the	•
Electrodeposited Copper-Tin Alloys"	
KATSER, I. M., KOKORIN, G. A., and KOSTOGONOV, V. G., "Metallographic Study of the Electrodeposited Iron-Nickel-Chromium	
Alloys" 23	
KATSER, I. M. and PETROVA, O. A., "Physicomechanical and Protective Properties of Tertiary Iron-Nickel-Chromium Alloys Prepared	
From Sulfamine Electrolyte" 28 STEPANENKO, V. T., VITKIN, A. I., and MYTSIK, P. A., "Deposition of	
Thin Chromium Coatings on Rapidly-Moving Steel Band" 33	
2/6	
- 1.9 -	

Extraction and Refining

USSR

UDC 669.3/6.472(02)

DELIMARSKIY, Yu. K., MIKHAYLOV, V. V., and SAMODELOV, A. P., TSNII [Central Scientific Research Institute] of Information and T.-E. I. [Technical and Economic Indicators] of Nonferrous Metallurgy

"Electrochemical Refining of Heavy Nonferrous Metals in Molten Salts"

Elektrokhimicheskoye rafinirovaniye tyazhelykh tsvetnykh metallov v rasplavlennykh solyakh (cf. English above), Moscow, 1971, 151 pp, i11, 93 k. (from RZh-Metallurgiya, No 1, Jan 72, Abstract No 1G194K from summary)

Translation of Abstract: The book examines and systematizes methods for the electrochemical refining of heavy nonferrous metals in melts of salts according to the data of Soviet and foreign literature. A survey is given of the purification of crude metals (Sn, Pb, Zn, Cu, Ni, Ag, Bi, Sb, In, Cd, Ga, Ge) by electrochemical, anodic, and cathodic refining methods. Experimental results are given for Sb and Cu for purification by the method of electroslag refining with the superimposition of direct current in a melt of salts. On the basis of the analysis here made the prospects for the utilization of the specific method of refining for purification of the metals under consideration are assessed. The method of cathodic-anodic refining of metals—1/2

USSR

DELIMARSKIY, Yu. K., et al., Elektrokhimicheskoye rafinirovaniye tyazhelykh tsvetnykh metallov v rasplavlennykh solyakh, Moscow, 1971, 151 pp, i11, 93 K. (from RZh-Metallurgiya, No 1, Jan 72, Abstract No 1G194K from summary)

a new trend in metal purification processes — is covered in greatest detail. The prospects of industrial use of this method for the refining of Sn, Pb-Sn alloys and the efficiency of its use for the purification of Bi, Cu, Zn, Sb, Ag are shown.

2/2

1/2 018 UNCLASSIFIED PROCESSING DATE--300CT70
TITLE--USE OF VECTOR POLAROGRAPHY FOR STUDYING FUSED SALTS -U-

AUTHOR-(03)-DELIMARSKIY, YU.K., TUMANOVA, N.KH., PRIKHODKO, M.U.

CCUNTRY OF INFO--USSR

SOURCE--ELEKTROKHIMIYA 1970, 6(4), 555-61

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--FUSED SALT, POLAROGRAPHIC ANALYSIS, PLATINUM ELECTRODE, LITHIUM CHLORIDE, POTASSIUM CHLORIDE, CADMIUM CHLORIDE, ACTIVATION ENERGY

CENTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/1125

STEP NO--UR/0364/70/006/004/0056/0561

CIRC ACCESSION NO--APO121684

UNCLASSIFIED

CIRC ACCESSION NO--APO121684

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE REDN. OF COCL SUB2 (SMALLER THAN OR EQUAL TO 0.3 WT.PERCENT) AT A 0.5 MM DIAM. PT WIRE ELECTRODE AT 500DEGREES IN THE 1:1 KCL:LICL MOLTEN SALT WAS STUDIED BY VECTOR POLAROGRAPHY. THE CONCN. EFFECT ON PEAK HEIGHT WAS LINEAR FOR CONCNS. FROM 10 NEGATIVE PRIMES TO 0.4 WT.PERCENT; HENCE, VECTOR POLAROGRAPHY CAN BE USED TO DET. CD PRIMES POSITIVE IN KCL-LICL. THE TEMP. COEFF. FOR THE PEAK HEIGHT (FROM 500-600DEGREES) WAS 2PERCENT AND THE ACTIVATION ENERGY 12.7 KCAL-MOLE. FACILITY: INST. OBSHCH. NEORG. KHIM., KIEV, USSR.

1/2 016 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--PRODUCTS OF THE ELECTROLYTIC DECOMPOSITION OF FUSED CARBONATES -U-

AUTHOR-(04)-DELIMARSKIY, YU.K., GRISHCHENKO, V.F., TUMANOVA, N.KH.,

SHAPOVAL, V.I.

COUNTRY UF INFO--USSR

SOURCE--UKR. KHIM. ZN. 1970, 36(2), 136-41

1、 \$1.1、 44.1 数据 \$1.2 数据 \$1.2 (1) 。

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--ELECTROLYSIS, CARBONATE, FUSED SALT, ALKALI METAL, EUTECTIC, CHEMICAL DECOMPOSITION, ELECTROLYTIC DECOMPOSITION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/1932

STEP NO--UR/0073/70/036/002/0136/0141

CIRC ACCESSION NO--APOL18894

UNCLASSIFIED

可分子 医乳毒素异形菌 數學數型集團 自讀其

016 UNCLASSIFIED : PROCESSING DATE--230CT70 CIRC ACCESSION NO--APO118894 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. NO C IS FORMED AT THE CATHODE IF AN ELECTROLYTE CONTG. SOPERCENT EQUINDLAR K SUB2 CO SUB3-NA SUB2 CO SUB3 MIXT. IN KCL IS USED AT 700DEGREES. IF TO THE SOLN., 9 PERCENT LI SUB2 CO SUB3 IS ADDED THE CURRENT EFFICIENCY OF C BECOMES 92.8PERCENT AND IN LI SUB2 CO SUB3-K SUB2 CO SUB3 EUTETIC AT A C.D. OF 1 A-CM PRIME2, THE EFFICIENCY OF C IS 100PERCENT AT 450DEGREES, FALLING WITH TEMP. AND C.D. INCREASE DUE TO FORMATION OF ALKALI METAL. ADDN. OF CO SUB2 TO THE SOLN. HAS LITTLE EFFECT ON C FORMATION. ADDN. OF 3PERCENT KOH MARKEDLY REDUCES IT. THERE IS A DECREASE IN C EFFICIENCY WITH ADDN. OF 25-50PERCENT KF. THE FORMATION OF C IS ATTRIBUTED TO THE PRESENCE OF CO SUB2 IN THE ELECTROLYTE AND THE EFFECT OF LI SUB2 CO SUB3 ON THE EASE OF ITS DECOMPN. NO FORMATION OF CO WAS OBSERVED. AT THE ANODE, CO SUB2-0 SUB2 MIXTS. ARE FORMED; THE MAX. CO SUB2 :0 SUB2 RATIO WAS OBTAINED AT 840DEGREES IN K SUB2 CO SUB3-NA SU32 CO SUB3 MIXT. (2.35:1.0). IN LI SUB2 CO SUB3-K SUB2 CO SUB3 AT 600DEGREES, THE RATIO WAS 1.0:1.17. THIS IS BELIEVED TO BE LARGELY DUE TO THE INCREASED EASE OF DISCHARGE OF CO SUB3 PRIME2 NEGATIVE AT THE HIGHER TEMP. FACILITY: INST. OBSHCH. NEORG. KHIM., KIEV, USSR.

INITASSIFIED

UNCLASSIFIED PROCESSING DATE--11DEC70
TITLE--SINTERING OF A SILICON TITANIUM CONCENTRATE FROM THE YAREGA DEPOSIT
AITH SCOIUM FLUORGSILICATE -UAUTHOR-(03)-DELIMARSKIY, YU.K., CHERNOV, R.V., KOVZUN, I.G.

COUNTRY OF INFO--USSR

SCUACE-- LF. PRIKL. KHIM. (LENINGRAD) 1970, 43 (5), 1008-15

DATE PUBLISHED ------70

SUBJECT AREAS-EARTH SCIENCES AND OCEANOGRAPHY, MATERIALS

TOPIC TAGS-MELTING POINT, CHEMICAL COMPOSITION, SILICON, TITANIUM, NINERAL DEPOSIT, GEOGRAPHIC LUCATION, SILICATE, FLUURIDE, SINTERING FURNACE

CENTREL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED 2RDXY REEL/FRAME--3004/0957

STEP NO--UR/0080/70/043/005/1008/1015

CIRC ACCESSION NO--APO131542

UNCLASSIFIED

UNCLASSIFIED PROCESSI: 7 DATE--11DEC70
CIRC ACCESSION NO--APO131542
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE EFFECTS OF THE PARTICLE SIZE
OISTRIBUTION OF THE CONC., THE TEMP., THE CHEM. COMPN. OF THE STARTING
MIXT., AND THE PRESSURE OF THE GASEOUS SIF SUB4 ON THE SINTERING PROCESS
HERE STUDIED. THE EQUIL. PRESSURE OF SIF SUB4 OVER A MIXT. OF THE CONC.
AND NA SUB2 SIF SUB6 INCREASES SHARPLY AS COMPARED TO THE PRESSURE OVER
PURE NA SUB2 SIF SUB6 AT EQUAL TEMP. INTRODUCTION OF SUBSTANCES INTO
THE REACTION MIXT. WHICH DECREASE THE M.P. EXERTS A POS. EFFECT ON THE
DEGREE OF INTERACTION OF THE COMPONENTS.
OBSHCH. NEORG. KHIM., KIEV, USSR.

UNCLASSIFIED

UNCLASSIFIED

PROCESS!! 7 DATE--11DEC70

THE PARTICLE SIZE
OF THE PARTICLE SIZE
ON THE START OF THE CONC.

AND THE PRESSURE OF SIF SUB4
ON THE START OF THE CONC.

AND THE PRESSURE OF SIF SUB4
ON THE START OF THE CONC.

AND THE PRESSURE OF SIF SUB4
ON THE START OF THE CONC.

AND THE PRESSURE OF SIF SUB4
ON THE START OF THE CONC.

AND THE PRESSURE OF SIF SUB4
ON THE START OF THE CONC.

AND THE START OF THE CONC.

AND THE START OF THE CONC.

AND THE START OF THE START OF THE CONC.

AND THE START OF THE STA

1/2 027

UNCLASSIFIED

PROCESSING DATE--27NOV70

TITLE--TITANIUM DISILICIDE PREPARATION -U-

AUTHOR-(03)-DELIMARSKIY, YU.K., CHERNOY, R.V., NIZOV, A.P.

COUNTRY OF INFO--USSR

SOURCE--U.S.S.R. 264,696

REFERENCE--OTKRYTIYA, IZOBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI 1970, 47(9)

DATE PUBLISHED -- 03MAR 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--CHEMICAL PATENT, ELECTROLYSIS, INERT GAS, TITANIUM COMPOUND, SILIGIDE, FLUORIDE, ALKALI METAL, HALIDE, ARGON

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3001/1467

STEP NO--UR/0482/70/000/000/0000/0000

CIRC ACCESSION NO--AA0126998

-UNCLASSIFIED

2/2 027	UNCLASSIFIED	PROCESSING DATE27N	070
IRC ACCESSION NOAA0126			-
BSTRACT/EXTRACT(U) GP-	ARSTRACT. TI DISI	LITCIDE IS PREPD. BY	
ELECTROLYSIS IN AN INER	T CAS E C AD ATM 1	N AN ELECTROLYTE CONTG.	
ELECTROLIZATION AND THEK	I GAST C.O. ANT ATHE	COMPN. (IN WT. PERCENT)
ALKALI METAL HALTDES AN	J HAVING THE FULLUWING	ATE DOWN AND A TE COME	, . c
NACE, KCL (1:17 35-7, AL	CALL METAL PLUCKUSTER	CATE 30-8, AND A TI, CONT	.
COMPO., E.G. TIO SUB2 O	A NA SUBZ IIF SUBO, OF	THU PATACKOV CCD	
INSTITUT OBSHCHEYI NEOR	SANICHESKUY KHIMII AN	OKKUINZKOT ZZK*	
<u> </u>	一个一个连续的 医阿里克 美统经营分离		
	그 전 기가 되었다면 그리고 뭐라고 뭐		
: [[[[[[[[[[[[[[[[[
	그 이번 하면 뭐 하다 하고 않을까요?		
		付金書集 化二次基金 医多克克氏 医异戊	
호텔 (2011년 1월 1일	그 시 시 시 시간 하는 생활 수 있다.		
[일반] 이 아이는 아이는 아이는 아이를 받는다.			
		化邻苯基基	
	UNCLASSIFIED		
	UNICLASSIFIED		

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200620010-8"